
9.2.2 Subalgebraic Systems and Product Algebraic Systems
⤷ Subalgebraic system 

 Definition 9.10:  Let V=<S,  f1,  f2,  … ,  fk> be an algebraic 
system, and let B be a non-empty subset of S. If B is closed 
under all operations f1,  f2, … , fk，B and S share the same 
algebraic constants, then <B,  f1,  f2, … , fk> is called a sub-
algebraic system (or simply, a subalgebra) of V.  Sometimes, 
the sub-algebraic system is simply denoted by B.

 Example：

• < N,＋> is a subalgebra of <Z,＋>.

• < N,＋ ,0 > is also a subalgebra of <Z,＋,0>（because N is 
closed under + and has the same algebraic constants）.



9.2.2 Subalgebraic Systems and Product Algebraic Systems
⤷ Subalgebraic system(e.g.)

 Example：

•< N−{0},＋> is a subalgebra of  <Z,＋>，but not a subalgebra of<Z,＋,0>
(because the algebraic constant 0 is not included in N−{0}).

 Notes: 

① A subalgebra and its original algebra are the same type of algebraic 
system (they share the same algebraic constants, the same number of 
operations, and the same operational properties).

② Every algebraic system V always has at least one subalgebraic system.



9.2.2 Subalgebraic Systems and Product Algebraic Systems
⤷ Trivial subalgebra and proper subalgebra

 The largest subalgebra is simply V itself.
 The smallest subalgebra is the set B formed by all the algebraic 

constants in V, provided that B is closed under all operations in 
V, in this case, B constitutes the smallest subalgebra of V.

 The trivial subalgebras refer to the largest and smallest 
subalgebras of  V.

 A proper subalgebra refers to a subalgebra B where B is a 
proper subset of S, that is, B forms a proper subalgebra of V.

 Example: Let V=<Z,+,0>，and define nZ = { nz | z∈Z}，n is a 
natural number，then nZ is a subalgebra of V ,  when n = 1 or
0 ，nZ is a trivial subalgebra of V ，for all other n, nZ is a 
nontrivial proper subalgebra of V . 



9.2.2 Subalgebraic Systems and Product Algebraic Systems
⤷ Product algebra 

Definition 9.11:  Let V1=<S1,∘> and V2=<S2,∗> be algebraic systems，
∘ and ∗ are binary operations. The product algebra V1 × V2  is an 
algebraic system with a binary operation, defined as V1×V2 =<S, • > ，
where S =S1×S2, and for all ∀<x1, y1>, <x2, y2>∈S1×S2 ,  we have <x1, 
y1> • <x2, y2>=<x1∘x2,  y1∗ y2>.

Example: Consider integer addition V1=<Z,+> and matrix 
multiplication V2=<M2(R), ∙ >, 

thenV1 × V2 = < Z×M2(R), ∘> ，

and for all ∀<z1,M1>, <z2,M2>∈Z×M2(R) , 

we have <z1,M1> ∘ <z2,M2> = <z1+z2, M1∙M2> . 

For example: >
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9.2.2 Subalgebraic Systems and Product Algebraic Systems
⤷ The properties of product algebras 

 Let V1=<S1,∘> and V2=<S2,∗> be algebraic systems, where ∘ and ∗ are 
binary operations. The product algebra is V=<S1×S2, • > .

(1) If ∘ and ∗ are commutative, then the operation • is also commutative.

(2) If ∘ and ∗ are associative, then the operation • is also associative.

(3) If ∘ and ∗ are idempotent, then the operation • is also idempotent.
(4) If ∘ and ∗ have respective identity elements e1 and e2 then the 

operation • also has an identity elements <e1,e2>.

(5) If ∘ and ∗ have respective zero elements θ1 and θ2, then the operation  
• also has a zero element  < θ1, θ2>.

(6) If x has an inverse x−1, with respect to ∘, and y has an inverse y−1 with 
respect to ∗,then ⟨x,y⟩ has an inverse <x−1,y−1> with respect to • .



9.2 Algebraic Systems

9.2.1 Definition and Examples of Algebraic Systems
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9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems

Definition of Homomorphism

Classification of Homomorphisms

• Monomorphism, Epimorphism, Isomorphism

• Endomorphism

Examples of Homomorphisms

Properties of Epimorphism



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Definition of homomorphism

 Definition 9.12:  Let V1=<S1,∘ > and V2=<S2,∗> be algebraic systems, 
where ∘ and ∗ are binary operations. If there exists a mapping f : 
S1→S2, such that ∀x,y∈S1  , f (x ∘ y) = f(x) ∗ f( y)  then f is called a 
homomorphism from V1 to V2, or simply a homomorphism.

x ●

y ●

x∘y ●

∘

● f(x)
● f(y)

∗

● f(x)∗f(y)=f(x∘y)



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Examples of homomorphism of algebraic systems (groups)

 Example : V=<R*,⋅>, determine which of the following functions are 
homomorphisms of V？
(1)  f(x)=|x|    (2) f(x)=2x      (3) f(x)=x2

(4) f(x)=1/x (5) f(x)= −x (6) f(x)=x+1
 Solution: Analyze whether the function satisfies f(x⋅y)=f(x)⋅f(y) for all 

x,y in the nonzero real numbers set R* .
(1) f(x⋅y) = |x⋅y| = |x| ⋅|y| = f(x) ⋅f(y) homomorphisms
(2) f(x⋅y)=2(x⋅y) ≠ f(x)⋅f(y)=(2x)⋅(2y)=4xy            non-homomorphic
(3) f(x⋅y)=(x⋅y)2=f(x)⋅f(y)=x2⋅y2 homomorphisms
(4) f(x⋅y)= 1/(x⋅y)=f(x)⋅f(y)= 1/x⋅1/y homomorphisms
(5) f(x⋅y)=−(x⋅y) ≠ f(x)⋅f(y)=(−x)⋅(−y)=xy non-homomorphic
(6) f(x⋅y)=x⋅y+1≠ f(x)⋅f(y) (x+1)⋅(y+1)=xy+x+y+1 non-homomorphic



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Homomorphisms and Monomorphisms of Algebraic Systems

 Let f be a homomorphism from V1=<S1,∘ > to V2=<S2,∗>, if f is injective 
(one-to-one), then f is called a monomorphism.

• Note: f being injective (or a one-to-one mapping) means that for any 
x1,x2∈S1, if f(x1)=f (x2), then x1=x2 . 

 Example: Let V1 = <R*,⋅>, V2 = <R*,⋅>, and define the mapping  f:R*→R*
为 f(x)=x2.  Is f a monomorphism ？

•We need to verify the homomorphism property and injectivity.
•Homomorphism: We need to check whether for all x,y∈R*, the equation 
f(x⋅ y)=f(x)⋅ f(y) holds. Since f(x⋅ y)= (x⋅ y)2 = f(x)⋅ f(y) = x2 ⋅y2 , thus 
f(x)=x2 satisfies the homomorphism property .

• Injectivity: We need to check whether for all x1, x2∈R∗,if f(x1)=f(x2) , 
then x1=x2 . For example, if x1 =−1 、x2=1， we have x1

2= x2
2 =1，but x1 

≠ x2， Therefore, the mapping f(x)=x2 is not injective .
•Conclusion: f(x)=x2  is a homomorphism, but it is not a monomorphism.



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Surjective homomorphism of algebraic systems

 Let f be a homomorphism from V1=<S1,∘ > to V2=<S2,∗>，if f is 
surjective (onto) , then f is called an epimorphism. In this case, V2 is 

called the homomorphic image of V1, denoted V1 ∼ V2.

•Note：f being surjective (or an onto mapping) means that it is covering, 
i.e., for every element y in S2 , there exists some element x in S1 such 
that f(x)=y.

 Example: Let V1 = ⟨Z,+⟩, V2=⟨Z3,+3⟩ (the set of integers modulo 3 with
addition modulo 3), and define the mapping f: Z → Z3 be defined by
f(x)= x mod 3. Is f an epimorphism ？

f



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Surjective homomorphism of algebraic systems(e.g.)

 Homomorphism: We need to check whether for all x,y∈Z, f(x+y)=f(x) +3

f(y). Since f(x+y)=(x+y)mod 3 , f(x) +3 f(y)=(x mod 3 + y mod 3) mod 3 , 
by the distributive property of modular arithmetic, we have  f(x+y)=f(x) 
+3 f(y), Therefore f(x)= x mod 3 satisfies the homomorphism property. 

 Surjectivity: For each element y in Z3, does there exist some x in Z3 such 
that f(x)=y. Since every element in Z3 (0, 1, 2) can be obtained by taking 
modulo 3 of some integer, f is surjective. That is, f is an epimorphism.

 Conclusion: f(x)= x mod 3 is a homomorphism and is indeed an 
epimorphism.

 Note：Since x1 and x2 having the same remainder under f(x)= x mod 3
does not imply that x1 = x2 , f is not injective, that is, f is not a 
monomorphism. 



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ isomorphism of algebraic systems

 Let f be a homomorphism from V1=<S1,∘ > to V2=<S2,∗>，if f is bijective, 
then f is called an isomorphism from V1  to V2 denoted as V1≅V2.

 Note： f being bijective (or a one-to-one and onto mapping) means that f is both 
injective (one-to-one) and surjective (onto). The existence of an isomorphism between 
two algebraic systems means that their algebraic structures are equivalent.

 Example: Let V1=⟨R,+⟩, V2=⟨R,+⟩ , f: R→R be defined by f(x)=2x. Is the 
mapping f an isomorphism from V1 toV2？

• we need to verify two conditions: the mapping is a homomorphism, and 
it is bijective.



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Isomorphism of algebraic systems(e.g.)

 Homomorphism: f(x+y)=2(x+y)=2x+2y=f(x)+f(y), which shows that f
is a homomorphism.

 Bijectivity :

• Injectivity: If f(x1)=f(x2), then 2x1 =2x2 , which leads to x1 = x2 ,
showing that f is injective.

• Surjectivity: For every real number y∈R, there exists x=y/2, such
that f(x)=2⋅y/2=y showing that f is surjective.

• Since f is both injective and surjective, it is bijective.

 Conclusion:
f(x)=2x is an isomorphism from V1 to V2, and it preserves the 
properties of the addition operation (closure, commutativity, 
associativity, identity element, and inverse element).



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Endomorphisms  and automorphisms of algebraic systems

 A homomorphism f:S→S from an algebraic V=⟨S,∘⟩ to itself is called 
an endomorphism. That is, for all x,y∈S we have f(x∘y)=f(x)∘f(y).

 A zero homomorphism maps every input element to the zero 
element in the target algebraic structure.

 An automorphism refers to a homomorphism f:S→S of the algebraic 
system V=⟨S,∘⟩ that is both injective and surjective, indicating that 
the system is structurally equivalent to itself.

 A monomorphic endomorphism (or injective endomorphism) is a 
special type of endomorphism that is also injective.



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Endomorphisms  and automorphisms of algebraic systems(e.g.)

 Example: let V=<Z,+>, ∀a∈Z, fa : Z→Z，fa(x)=ax . Prove that fa is an 
endomorphism of V. 

• Since ∀x,y∈Z，we have: fa(x+y) = a(x+y) = ax+ay = fa(x)+fa(y).

• When a = 0 , f0 is called the zero homomorphism, when a=±1, fa is 
called an automorphism.

• For all other values of a, fa  is an injective endomorphism
(monomorphic endomorphism).



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Homomorphisms and Isomorphisms in Algebraic Systems(e.g.)

 Example:  Let V1=<Q,+>, V2=<Q*,⋅>, where Q*=Q−{0} is the set of 
nonzero rational numbers. Define f : Q→Q*, f(x)=ex .
Determine the type of homomorphism that f(x) defines from V1 to V2 .

 Solution:
• f is a homomorphism from V1  toV2, because ∀x,y∈Q, have 
f(x+y)=ex+y=ex⋅ey=f(x) ⋅ f(y).

• f is a monomorphism because for ∀x,y∈Q , If f(x1)=f(x2)= ex1=ex2,
which implies x1=x2 , f is injective.

•However, for any y∈Q∗ , ex cannot reach every nonzero rational 
number (for example, negative numbers), so f(x )=ex is not surjective. 



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Homomorphisms and Isomorphisms in Algebraic Systems(e.g.)

Example: Let V=<Zn,⊕>, fp:Zn→Zn , fp(x) = (xp) mod n, p = 0, 1, … , 
n−1. Analyze the properties of  fp.

① Homomorphism: ∀x, y∈Zn,  fp(x⊕y)=((x⊕y)p) mod n  = (xp) mod 
n ⊕ (yp) mod n = fp(x) ⊕ fp(y).

② fp is an endomorphism. Both the input and output of  fp are Zn , and 
it satisfies the homomorphism property.

③ If p and n are coprime, then fp is injective (Monomorphism). For 
example, when n=6 and p=3(which are not coprime), we have 
fp(1)=(1⋅3) mod 6 =3, but x1=1 ≠ x2 =3, so it is not injective.



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Homomorphisms and Isomorphisms in Algebraic Systems(e.g.)

Example: Let V=<Zn,⊕>, fp:Zn→Zn, fp(x) = (xp) mod n, p = 0, 1, … , 
n−1. Analyze the properties of  fp.

④ Surjectivity (Epimorphism): If p and n are coprime, then fp is 
surjective. For example, with n=6 and p=3 (not coprime), in Z6 , for 
y=0, there is x=0,2,4,for y=3, there is x=1,3,5,but for y=1,2,4,5, 
no x satisfies fp(x)=y.

⑤ Zero Homomorphism: If p=0, then fp(x) =(x⋅ 0)mod n=0, which 
means it maps all inputs to zero. Therefore, fp is the zero 
homomorphism.

⑥ Automorphism: If p and n are coprime, fp satisfies both injectivity 
and surjectivity (bijectivity), so fp is an automorphism.



9.2.3 Homomorphisms and Isomorphisms of Algebraic Systems
⤷ Properties of epimorphism between Algebraic Systems

 Let V1 and V2 be algebraic systems, and let f : V1→ V2 , be a surjective 
(onto) homomorphism. Then:
(1) If the operation ∘ in V1  is commutative (associative, idempotent), then 

the corresponding operation ∘′ in V2 is also commutative (associative, 
idempotent).

(2) If ∘ is distributive over ∗ in V1 , then the corresponding ∘′ is 
distributive over ∗′ in V2 .

(3) If ∘ and ∗ are absorbent (absorption law holds) in V1 , then the 
corresponding ∘′ and ∗′ are also absorbent in V2 .

(4) If ∘ in V1 has an identity element e1 (or a zero element θ1), then f(e1) ) 
(or f(θ1)) is the identity (or zero) element for the corresponding 
operation ∘′  in V2 .

(5) If the inverse of x under ∘ in V1 is x−1, then the inverse of f(x) under 
the corresponding ∘′ in V2 is f(x−1). 
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